
I s c o e

Domain and Specification Models for Software Engineering

Neil Iscoe, Zheng-Yang Liu, Guohui Feng
EDS Research, Austin Laboratory

1601 Rio Grande, Ste 500
Austin, Texas 78701

iscoe Qaus tin.eds.com

Abstract
This paper discusses our approach to representing

application domain knowledge for specific software
engineering tasks. Application domain knowledge is
embodied in a domain model. Domain models are used to
assist in the creation of specification models. Although
many different specification models can be created from
any particular domain model, each specification model is
consistent and comect with respect to the domain model.
One aspect of the system-hierarchical organization is
described in detail.

Introduction
Creating, maintaining and evolving software systems

requires an understanding of both programming knowledge
and application domain knowledge. Programming
knowledge is relatively well understood. It is formal,
modeled in a variety of ways, explicit enough to be taught
to novices, and general enough to apply across many
domains. Although empirical field studies (Curtis, et al..
1988) have shown that application domain knowledge is
critical to the success of large projects, this knowledge is
rarely modeled as needed. It is usually implicitly embodied
in the application code rather than explicitly recorded and
maintained separately from the code. Even when the
knowledge is recorded, it is generally stored in voluminous
natural language documents in an informal rather than a
formal manner. Although problem-specific languages
partially remedy this situation, they still capture domain
knowledge in an ad hoc rather than a systematic manner.
Furthermore. these languages are generally not designed in
such a way that the results can be generalized or even
replicated.

Application domain models are representations of
relevant aspects of application domains that can be used for
different operational goals in support of specific software
engineering tasks or processes. Domain models determine
what there is in the world for reasoning about given
application domains and sanction the types of inferences
allowed.

Operational goals are always implicit in the construction
of a domain model and are essential to understanding the
form and content of that model. Unlike generalized
knowledge representation projects such as Cyc (Lenat,
1990) that attempt to provide a basis for modeling
encyclopedic knowledge, domain modeling explicitly

acknowledges the commonly held view (Amarel, 1968)
that representations are designed for particular purposes.
These purposesthe operational goals-inherently bias any
particular solution and dictate the fmal form of the model.
As real-world domains are infinitely rich and diverse, we
inevitably adopt particular perspectives in deciding what is
relevant with respect to given tasks when formulating
models (Liu and Farlej.. 1991). Even within the field of
domain modeling, m:ny different operational goals and
modeling projects are king pursued (Iscoe, et al. 1991).

In the next section, we give an overview of the domain
modeling research at EDS and our corresponding
operational goals. We then introduce a model
reformulation concept-the generation of multiple
specification models from a single domain model. The
remainder of the paper focuses on one of the mechanisms
which allows a specification designer to rapidly construct
specification models that are consistent and correct with
respect to the original domain model.

Domain Modeling Research
EDS specializes in creating software for a variety of

industries. Each industry area such as utilities, finance, or
health insurance has an associated body of knowledge
which is critical to the understanding of specification and
implementation of software systems. Domain expertise is
acquired by personnel over a period of years, and the
company is organized into strategic business units (SBUs)
so that knowledge about a particular industry can be
maintained over time.

At the EDS Austin research laboratory, we are
attempting b create a domain modeling system which can
achieve the following operational goals:

Requirements & Specifications-Eliciting, verifying,
and formalizing software requirements and specifications,

Program TransformatiodGeneration-Transforming a
specification into efficient executable code,

Reverse Engineering-Identifying the semantics of
existing code in terms of a partial specification.

Explanation, Education & Communication-capturing
and communicating application domain knowledge.

The realization of these operational goals is consistent
with our long-term plan for creating knowledge-based
tools to support programming-in-the-large (Barstow, 1988)
development. The domain modeling approach provides
ample opportunities for investigating and creating new
development paradigms.

106

, I

Figure 1. Domain Modeling with Operational Goals

Figure 1 illustrates the context in which we model. The
industry knowledge for each SBU is instantiated into a
domain model, which then serves as a source of knowledge
for programs (the ovals) to achieve our operational goals.
In the figure, the specification model (rectangle) contains
the specification for a specific system within an application
domain. Because one of our goals is to generate executable
code, we require that any particular specification model be
consistent. A very large but finite number of specification
models can be created which are consistent and are correct
with respect to a particular domain model. 0 Domain Knowledge

Modeling
Language n

Figure 2. Instantiating Specification Models

Figure 2 illustrates the two separate modeling tasks
required by our approach. Domain experts interact with a
system to store their knowledge in terms of a domain
model. Specification designers then use the system to build
specification models which satisfy constraints in the
domain model.

In order to create a specification model, the designer
selects a set of relevant policies and constraints from the
domain model that must be included and enforced in the
specification model. The constraints include intra-attribute
as well as inter-attribute relationships within and across
entities relevant to the task at hand.

Dynamic Knowledge Structure
The remainder of this paper presents one aspect of our

meta-model representation that is relevant to this
workshopdynamic restructuring of a hierarchically
organized domain knowledge.

While most would agree that hierarchical organizational
strategies provide a reasonable way to structure knowledge
within complex domains, the creation of a hierarchical
structure, like any type of representational scheme, imposes
a particular view of the world. Unfortunately, there is no
particular view that is optimal for every application.
Although the programs within a particular application share
the same legal, physical, and economic constraints, the
construction of any particular specification model depends
upon a set of policy decisions that determine how cases are
handled. Furthermore, sofware in rhe large systems are
continually changing in such a manner that the concept of a
static hierarchy is insufficient to capture the process of
system evolution.

Consider software systems that manage the payment of
health insurance claims. Although conceptually simple,
these systems handle hundreds of thousands of different

107

cases. One way to represent these cases is to enumerate the
leaf nodes of the hierarchies created by the appropriate
partitioning of attributes such as gender, age, family-status,
previous-condition, employment, deductibles, copayments,
prognosis, and so on. Unfortunately, the tree structure
created by case expansion not only obscures relevant and
interesting cases, but is also a monolithic structure. It is a
paradox of object-oriented approaches that well-adapted
structures are not adaptable to new situations.

Because of the combinatorial explosion of the leaf
nodes, it makes sense to handle the cases at as high a level
as possible. Term subsumption systems such as CLASSIC
(Borgida et al. 1989) automate this process by determining
the place in a hierarchy in which terms are subsumed. But
subsumption systems assume a single smcture in which all
sub-models can belong. In the case of applications such as
health insurance, individual modules may have different
hierarchical structures and still maintain the integrity and
constraint rules of the domain model.

Attribute Definitions
Attributes are normally considered as data values or slot

fillers within a class or frame. However, the standard
treatment of attributes as lists of data values with some
underlying machine representation fails both to capture
sufficient semantic information from the application
domain and to state definitions with sufficient formality to
allow semantics-related consistency checks.

Attributes are functions which define how a set of
objects is mapped within a class. One type of attribute has
a value set represented by a nominal scale which consists
of a set of values, HA) = (C1, . . . Cn].

The semantics of an application domain are maintained
by creating categories in such a way that items to be
categorized with respect to a particular attribute are as
homogeneous as possible within a category and as
heterogeneous as possible between categories. Examples
of nominal scales abound and map cleanly to the notion of
enumerated type as shown below:

(Colors
:type nominal-scale
:vulues (Red Yellow Green Blue)

The next type of attribute is an ordinal scale-a nominal
scale in which a total ordering exists among the categories.
Interval and ratio scales are the more quantitative scales
and add definitions of dimensions, units, and granularity.

This brief description of atuibute type was included to
allow the reader to understand the examples in this paper.
Attributes have additional types and a number of other
properties which are explained in (Iscoe. et al 1992).

Hierarchical Decomposition
Hierarchies are a natural way to view and organize

information and, at some level of abstraction, are a -r r t of
most object-oriented and knowledge represei, lion
languages. Unfortunately, the simplicity of these CI - ~ t s
can sometimes obscure the semantics that a mi,L-i is

attempting to capture. That one's needs dictate one's
ontological choice is a fundamental premise of knowledge
engineering. The ability to systematically define a new set
of attributes by partitioning the value sets of old attributes
and then using these new attributes to reclassify the domain
in accordance with the new requirements is a fundamental
aspect of our attribute characterization. By preserving the
"ontological map" as a component of the attribute, the
domain modeler can shift between the differing paradigms
modeled by various classes of objects.

Attribute characterization provides a representation and
systematic methodology for the partitioning of attributes
that facilitates the way they are organized, subdivided, and
built into hierarchies. An attribute restriction is a new
attribute whose value set and set of applicable relations are
subsets of the original attribute.

Creating a new attribute serves the dual purpose of
creating a set of views on the old attribute as well as
creating a new attribute. Often, new auributes are defined
in terms of old attributes by partitioning the original value
set and then equating each new attribute value with an
element of the partition. As an example, an accounts
receivable (AR) system may use the attribute
days-to-payment whose value is the average number of
days it takes for the client to pay a bill.

(days-to-paymenc
:type ratio-scale
:dimension time
:unit h Y S
:min 0
:mnx 360)

From the standpoint of AR applications, a more useful
attribute might be :

(type-ofgayer:
:type Ordinal-scale
:Ordered-by lateness of paymen
:values (pays-on-time slow-pay dead-beat))

This new attribute will be defined by partitioning the
value set of days-to-payment, V p by subdividing the
range of values, then equating each value with one of the
elements of the partition as illustrated in figure 3 and
described as follows:

(type-ofqayer

(pays-on-time (c=30)
(slowjay

(dead-beat (>= 90))))

:mapped-from days-to-payment

(AND (> 30) (c 90)))

&yS-IOJaplcnt:
Ratio-sedc Tim in Days (Min 0) (Max 360)

QF-ofpYU: typC-dq.ya: type-ofqayu:
Pay-on-time Slowgay Deadbeat

Figure 3 - Partitioning days togapent

108

Note that the days-to-payment attribute is based on a
ratio scale while the type-ofsayer attribute is based on an
ordinal scale. In general a defined attribute represents a
loss of information (in this example, the number of days
overdue) in return for a more useful and inherently less
detailed category.

Using Population Parameters
Population parameters facilitate the formation of new

attributes. For example, some graduate admissions
committees use interval-scaled GRE scores to separate
applicants into acceptance categories. Population
parameters allow designers to create new attributes based
on restrictions to the original attribute as shown below:

GRE-Sfore: Intaval-rak Score in GRE units
(min 400) (max 1600)
(dist normal) (m a 1100) (stddcv 12S)

Figure 4 - Using Population Parameters to
Restrict an Attribute

Figure 4 shows the GRE score as an attribute which
could be attached to a student. Understanding the
distribution of values within the value set of GRE scores
allows application designers to create partitions in any one
of a variety of ways. For example, assume that an
application designer wanted to create an initial partition
based on the requirement "accept all students who score in
the top x% on the GRE. consider those who score between
x% and y%, and reject those who score in the bottom y%. "
Given this type of requirement, the domain model contains
the appropriate information to use and an algorithm to
produce the correct raw score numbers to achieve such a
partition.

Another way that these requirements are sometimes
stated is to build a partition based on an absolute raw score.
For example, a requirement like "accept all students who
score above 1450 on the GRE" can be easily incorporated.
Furthermore, this type of specification can be used
interactively so that the ,designer can juggle between raw
scores and percentiles until the partitions appropriate for
the application domain are produced.

Domain and Specification Models
In this section we focus on relations between attributes

within a single domain model class. For the purposes of
this discussion we define the following attributes:

(name :type identifier)
(eye-color :type nominal-scale

:values (brown, blue, green))
(Gender :type nominal-scale

:values (male female))

:values (Y N))

:dimension (money)
:unit (dollar)
:granularity (.01))

:values (under65 65-and-over)
:mapped-from age

(Hysterectomy :type ordinal-scale

(Medicare-payment :type ratio-scale

(Age-m type: ordinal-scale

(under65 (< 65))
(65-and-over (>= 65)))

Although other constraints exist, domain model classes
can be regarded as consisting of sets of attributes which are
either required or might be included within a particular
domain model. These constraints are expressed as
follows:

musthuve(c, a, c o d) - attribute a must be used
in class c in a model if condition cond evaluates
to true.
applicable(c, a, c o d) - attribute a can be used in
class c a model if condition cond evaluates to
true.

Within any particular specification model, an attribute is

usedfm, c, a, c o d) - within model m, attribute a
is used in class c in model m if condition cond
evaluates to me.

The most straight-forward relationship between a
domain model and a specification model is that must-have
attributes are used in all specification models and
applicable attributes are selected by the specification
designer.

must-have@, a, cond) c) Vm used(m, c, a, cond)
applicable(c, a, cond) c) 3m used(m, c, a, cond)

must-have(c,a, cond) applicable(c,a, cond)

simply classified as used within a class.

thus

For example, in a domain model, name might be
required for all specification models, while eye-color could
be selected only if it were appropriate for the particular
specification model.

(person
:must-have ((Name 0)
:applicable ((eye-color 0)
...)

The application of these constraints when cond is
vacuously true is fairly standard feature in most modeling
languages of this type. However, name and eye-color are
attributes which are total and are not as interesting as the
cases that occur when the attributes are partial functions.

Conditions for Function Evaluation
Recalling that an attribute is a function which maps

objects to a particular property, cond can be interpreted as
the condition which must be satisfied for the attribute to be
a total instead of a partial function. In other words, cond
defines the subset which is the domain of applicability of

109

I
I .

the partial function. For example for a person class
hysterectomy is only applicable if the gender is female.

(applicable person Hysterectomy
(= Gender female))

The domain modeling system is designed so that the
conditions required to establish the proper domain for an
attribute are automatically maintained. These conditions
are constrained in such a way that tractability is maintained
and are of the form f f p , ai v1)f ... fpn an v,)) , where p i is
the name of a predicate, ai is the name of an attribute, and
vi is a value of the attribute.

When conditions exist, the following axiom is needed:
(applicable c a condl) -+
[(used m c a cond2) + (condl4 con&)] (1)

A user can create a specification model with any
particular class hierarchy as long as the domain policies
and consmints are satisfied.

Domain and specification model consistency is
maintained by a specialized theorem prover. The theorem
prover, STR+VE, is an upgraded version of the prover
presented in (Bledsoe 1980) for proofs of theorems in
general inequalities. A TMS is being constructed to
interface between the modeling system and the theorem
prover

We are currently experimenting with ways to capture
and verify domain modeling constraints by presenting
redundant information in a variety of ways. We believe
that many of the specification problems in large systems
are created when value set changes cause a single case to
be changed but fail to correct cases that were identified
from a previous inference.

For example, if we assume that hysterectomy is
applicable to females, the system can infer that
hysterectomy cannot apply to males by using axiom 1, the
definition of applicable, and the definition of gender to
derive a contradiction.

applicable(c, a, cond) t) 3m used(m, c, a, cond)
applicable(P. hys, [(= gender m)])

-(= Gender, M) +(= Gender, F)
(= Gender, M) -+ -(= Gender, F)

A key point is that when people are presented with value
sets they automatically and unconsciously perform
substitutions such as the ones listed above. This is a
reasonable way to build a model until a value set changes.
In large systems, value sets are frequently changed.
Consequently, conclusions that were drawn by using
negation to infer values become invalid. We use the
applicability of conditions and the system’s knowledge of
value sets to attempt to provide the proper cases for the
domain modeler to check when condtions change.

Discussion
In this paper, we have presented the concept of modeling

application domains in order to achieve the operational
goals of program specification, code generation. and
reverse engineering. The main concept is that multiple
specification models can be created that are consistent and
“correct” with respect to a domain model. Domain models

represent information about a particular industry area.
Specification models represent information about a
particular system.

Domain and specification models are constructed by
using a graphical interface to interactively create a set of
rules based on attribute value set partitions and the
preceding axioms. The system is being implemented using
Motif GUI on SPARC workstations. Although it is
currently operating in a single user mode, it is being
designed to be accessed simultaneously by multiple domain
modelers. We are also trying to accelerate the knowledge
capture process by reverse engineering data models that
have been captured by an existing EDS case tool and
instantiating them into the appropriate domain models.

References
Amarel, S . 1968. “On Representations of Problems of

ReLmning About Actions,” in Machine Intelligence 3, D.
Mi ”le. Ed., American Elsevier, New York pp. 131-171.

- :SIOW, D. 1985. “Domain-Specific Automatic
Prc zrsmming.” IEEE Transactions on Software
Engineering, vol. SE-11, no. 11, pp. 1321-1336.

Barstow, D. 1988. “Artificial Intelligence and Software
Engineering,“ in Shrobe, H.. ed., Exploring Artificial
Intelligence. AAAI. Morgan Kaufmann. San Mateo, CA.

Bledsoe. W. W., and Hines, L. M. 1980. “Variable
Elimination and Chaining in a Resolution-Base Prover for
Inequalities,“ Proceedings of the 5th Conference on
Automated Deduction, Les Arcs, France, Springer-Verlag,

Borgida. A., Brachman, R.J., McGuinness. D.L., and
Resnick, L.A. 1989. “CLASSIC: A structural data model
for objects,’‘ in Proceedings of the I989 ACM SIGMOD
International Conference on Management of Data, pp. 59-
67.

Curtis, B., Krasner. H. and Iscoe. N. 1988. “A Field
Study of the Software Design Process for Large Systems,”
Communications of the ACM. vol. 31, no. 11. pp. 1268-
1287.

Davis, R. 1991. “Knowledge Representation:
Broadening the Perspective,” AAAI-91 Panel, Anaheim,
CA.

Iscoe, N, Browne. J.C., Werthv J. , and Liu, 2.Y. 1992
“Attributes - Building Blocks for Modeling Application
Domains,” Submitted to IEEE TSE

Iscoe, N., Williams, G. and Arango, G., Eds. 1991.
Domain Modeling for Software Engineering, Proceedings
of Domain-Modeling Workshop, Austin, Texas.

Lenat, D.B. , Guha. R.V.. Pitman, K., Pratt. D., and
Shepherd, M. 1990. “Cyc: Toward Programs with
Common Sense,” CACM, vol. 33, no. 8, pp. 3049.

Liu, 2.-Y. and Farley, A. 1991. “Tasks. Models,
Perspectives, Dimensions,” The 5th International
Workshop on Qualitative Reasoning Austin, T:.c:u, pp. 1-
12.

pp. 70-87.

110

